Using spatiotemporal relational random forests to improve our understanding of severe weather processes
نویسندگان
چکیده
Major severe weather events can cause a significant loss of life and property. We seek to revolutionize our understanding of and our ability to predict such events through the mining of severe weather data. Because weather is inherently a spatiotemporal phenomenon, mining such data requires a model capable of representing and reasoning about complex spatiotemporal dynamics, including temporally and spatially varying attributes and relationships. We introduce an augmented version of the Spatiotemporal Relational Random Forest, which is a Random Forest that learns with spatiotemporally varying relational data. Our algorithm maintains the strength and performance of Random Forests but extends their applicability, including the estimation of variable importance, to complex spatiotemporal relational domains. We apply the augmented Spatiotemporal Relational Random Forest to three severe weather data sets. These are: predicting atmospheric turbulence across the continental United States, examining the formation of tornadoes near strong frontal boundaries, and understanding the spatial evolution of drought across the southern plains of the United States. The results on such a wide variety of real-world domains demonstrate the extensive applicability of the Spatiotemporal Relational Random Forest. Our long-term goal is to significantly improve the ability to predict and warn about severe weather events. We expect that the tools and techniques we develop will be applicable to a wide range of complex spatiotemporal phenomena.
منابع مشابه
Understanding Severe Weather Processes through Spatiotemporal Relational Random Forests
Major severe weather events can cause a significant loss of life and property. We seek to revolutionize our understanding of and ability to predict such events through the mining of severe weather data. Because weather is inherently a spatiotemporal phenomenon, mining such data requires a model capable of representing and reasoning about complex spatiotemporal dynamics, including temporally and...
متن کاملSevere Weather Processes through Spatiotemporal Relational Random Forests
Major severe weather events can cause a significant loss of life and property. We seek to revolutionize our understanding of and ability to predict such events through the mining of severe weather data. Because weather is inherently a spatiotemporal phenomenon, mining such data requires a model capable of representing and reasoning about complex spatiotemporal dynamics, including temporally and...
متن کاملOpen problem: Dynamic Relational Models for Improved Hazardous Weather Prediction
We are developing dynamic relational knowledge discovery methods for use on mesoscale weather data. Severe weather phenomena such as tornados, thunderstorms, hail, and floods, annually cause significant loss of life, property destruction, and disruption of the transportation systems. The annual economic impact of these mesoscale storms is estimated to be greater than $13B (Pielke and Carbone, 2...
متن کاملDynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes
Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analys...
متن کاملLife Cycle Characteristics of Warm-Season Severe Thunderstorms in Central United States from 2010 to 2014
Weather monitoring systems, such as Doppler radars, collect a high volume of measurements with fine spatial and temporal resolutions that provide opportunities to study many convective weather events. This study examines the spatial and temporal characteristics of severe thunderstorm life cycles in central United States mainly covering Kansas, Oklahoma, and northern Texas during the warm season...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistical Analysis and Data Mining
دوره 4 شماره
صفحات -
تاریخ انتشار 2011